§ 25.1461 mounted engines may crush the container upon impact. - (c) A correlation must be established between the flight recorder readings of airspeed, altitude, and heading and the corresponding readings (taking into account correction factors) of the first pilot's instruments. The correlation must cover the airspeed range over which the airplane is to be operated, the range of altitude to which the airplane is limited, and 360 degrees of heading. Correlation may be established on the ground as appropriate. - (d) Each recorder container must- - (1) Be either bright orange or bright vellow: - (2) Have reflective tape affixed to its external surface to facilitate its location under water; and - (3) Have an underwater locating device, when required by the operating rules of this chapter, on or adjacent to the container which is secured in such a manner that they are not likely to be separated during crash impact. - (e) Any novel or unique design or operational characteristics of the aircraft shall be evaluated to determine if any dedicated parameters must be recorded on flight recorders in addition to or in place of existing requirements. [Amdt. 25–8, 31 FR 127, Jan. 6, 1966, as amended by Amdt. 25–25, 35 FR 13192, Aug. 19, 1970; Amdt. 25–37, 40 FR 2577, Jan. 14, 1975; Amdt. 25–41, 42 FR 36971, July 18, 1977; Amdt. 25–65, 53 FR 26144, July 11, 1988; Amdt. No. 25–124, 73 FR 12563, Mar. 7, 2008; 74 FR 32800, July 9, 20091 # $\S\,25.1461$ Equipment containing high energy rotors. - (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. - (b) High energy rotors contained in equipment must be able to withstand damage caused by malfunctions, vibration, abnormal speeds, and abnormal temperatures. In addition— - (1) Auxiliary rotor cases must be able to contain damage caused by the failure of high energy rotor blades; and - (2) Equipment control devices, systems, and instrumentation must reasonably ensure that no operating limitations affecting the integrity of high energy rotors will be exceeded in service. - (c) It must be shown by test that equipment containing high energy rotors can contain any failure of a high energy rotor that occurs at the highest speed obtainable with the normal speed control devices inoperative. - (d) Equipment containing high energy rotors must be located where rotor failure will neither endanger the occupants nor adversely affect continued safe flight. [Amdt. 25-41, 42 FR 36971, July 18, 1977] # Subpart G—Operating Limitations and Information #### §25.1501 General. - (a) Each operating limitation specified in §§25.1503 through 25.1533 and other limitations and information necessary for safe operation must be established. - (b) The operating limitations and other information necessary for safe operation must be made available to the crewmembers as prescribed in §§ 25.1541 through 25.1587. $[{\rm Amdt.}\ 25\text{--}42,\ 43\ FR\ 2323,\ Jan.\ 16,\ 1978]$ # OPERATING LIMITATIONS # §25.1503 Airspeed limitations: general. When airspeed limitations are a function of weight, weight distribution, altitude, or Mach number, limitations corresponding to each critical combination of these factors must be established. # $\S\,25.1505$ Maximum operating limit speed. The maximum operating limit speed $(V_{MO}/M_{MO}$ airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be deliberately exceeded in any regime of flight (climb, cruise, or descent), unless a higher speed is authorized for flight test or pilot training operations. V_{MO} M_{MO} must be established so that it is not greater than the design cruising speed V_C and so that it is sufficiently below V_D/M_D or V_{DF}/M_{DF} , to make it highly improbable that the latter speeds will be inadvertently exceeded in operations. The speed margin between V_{MO}/M_{MO} and V_D/M_D or $V_{DF}M/_{DF}$ may not be less than that determined # Federal Aviation Administration, DOT under §25.335(b) or found necessary during the flight tests conducted under §25.253. [Amdt. 25-23, 35 FR 5680, Apr. 8, 1970] # §25.1507 Maneuvering speed. The maneuvering speed must be established so that it does not exceed the design maneuvering speed V_A determined under §25.335(c). #### §25.1511 Flap extended speed. The established flap extended speed V_{FE} must be established so that it does not exceed the design flap speed V_F chosen under §§ 25.335(e) and 25.345, for the corresponding flap positions and engine powers. ### §25.1513 Minimum control speed. The minimum control speed V_{MC} determined under §25.149 must be established as an operating limitation. #### §25.1515 Landing gear speeds. - (a) The established landing gear operating speed or speeds, $V_{LO,}$ may not exceed the speed at which it is safe both to extend and to retract the landing gear, as determined under §25.729 or by flight characteristics. If the extension speed is not the same as the retraction speed, the two speeds must be designated as $V_{LO(EXT)}$ and $V_{LO(RET),}$ respectively. - (b) The established landing gear extended speed V_{LE} may not exceed the speed at which it is safe to fly with the landing gear secured in the fully extended position, and that determined under § 25.729. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–38, 41 FR 55468, Dec. 20, 1976] #### §25.1516 Other speed limitations. Any other limitation associated with speed must be established. [Doc. No. 2000-8511, 66 FR 34024, June 26, 2001] ### $\S 25.1517$ Rough air speed, V_{RA} . A rough air speed, $V_{\rm RA}$, for use as the recommended turbulence penetration airspeed in §25.1585(a)(8), must be established, which— - (1) Is not greater than the design airspeed for maximum gust intensity, selected for $V_{\rm B}$; and - (2) Is not less than the minimum value of $V_{\rm B}$ specified in §25.335(d); and - (3) Is sufficiently less than $V_{\rm MO}$ to ensure that likely speed variation during rough air encounters will not cause the overspeed warning to operate too frequently. In the absence of a rational investigation substantiating the use of other values, $V_{\rm RA}$ must be less than $V_{\rm MO}$ —35 knots (TAS). [Doc. No. 27902, 61 FR 5222, Feb. 9, 1996] # § 25.1519 Weight, center of gravity, and weight distribution. The airplane weight, center of gravity, and weight distribution limitations determined under §\$25.23 through 25.27 must be established as operating limitations. # §25.1521 Powerplant limitations. - (a) General. The powerplant limitations prescribed in this section must be established so that they do not exceed the corresponding limits for which the engines or propellers are type certificated and do not exceed the values on which compliance with any other requirement of this part is based. - (b) Reciprocating engine installations. Operating limitations relating to the following must be established for reciprocating engine installations: - (1) Horsepower or torque, r.p.m., manifold pressure, and time at critical pressure altitude and sea level pressure altitude for— - (i) Maximum continuous power (relating to unsupercharged operation or to operation in each supercharger mode as applicable); and - (ii) Takeoff power (relating to unsupercharged operation or to operation in each supercharger mode as applicable). - (2) Fuel grade or specification. - (3) Cylinder head and oil temperatures - (4) Any other parameter for which a limitation has been established as part of the engine type certificate except that a limitation need not be established for a parameter that cannot be exceeded during normal operation due to the design of the installation or to another established limitation.